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A note on the two-phase Hele-Shaw problem

By S A M D. H O W I S O N
Mathematical Institute, Oxford University, 24–29 St Giles, Oxford, OX1 3LB, UK

(Received 15 March 1999 and in revised form 1 May 1999)

We discuss some techniques for finding explicit solutions to immiscible two-phase flow
in a Hele-Shaw cell, exploiting properties of the Schwartz function of the interface
between the fluids. We also discuss the question of the well-posedness of this problem.

1. Introduction
The Hele-Shaw free boundary problem has been extensively studied over the last

half-century, as witnessed by a 600-paper bibliography.† Many of these papers were
stimulated by the original ‘fingering’ paper of Saffman & Taylor (1958), and this note
takes up a point made in passing in that paper.

Most theoretical and much experimental work on the Hele-Shaw problem has been
for ‘one-phase’ flow in which a Hele-Shaw cell contains two fluids, of which one
is viscous but the other is effectively inviscid. With the simplifying assumption of
constant pressure at the interface between the fluids, a great deal can be done, both
in constructing explicit solutions using complex-variable methods and in developing
more theoretical approaches to the questions of existence and uniqueness. When
the viscosity of both fluids is significant, however, much less progress has been
made, largely because the interface pressure can no longer be taken to be constant.
This makes progress using complex variables much more difficult, and likewise the
theoretical methods cannot easily be extended to cope with the second fluid.

The main contribution of this note is to show how a class of explicit solutions can
be constructed to the two-phase (or ‘Muskat’) problem. This is described in § 4; §§ 2
and 3 describe the model and some of its general properties.

2. The problem
We discuss the following model (Saffman & Taylor 1958) for immiscible two-phase

flow in a horizontal Hele-Shaw cell. The fluid velocity in each phase is given by

vi = −ki∇pi, i = 1, 2,

where pi(x, y, t) is the pressure in the region Ωi occupied by fluid i of viscosity µi,
ki = h2/12µi are the fluid mobilities, and h is the cell gap. For incompressible flow we
have

∇2pi = 0 in Ωi.

At the interface Γ separating the fluids, which we assume for simplicity to have only
one component, we assume the simple conditions

p1 = p2 (2.1)

† To be found at www.maths.ox.ac.uk/∼howison/Hele-Shaw/.
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and

−k1

∂p1

∂n
= −k2

∂p2

∂n
= Vn, (2.2)

where ∂/∂n is the derivative normal to Γ and Vn is the normal velocity of Γ . Note
that the effects of surface tension are ignored in these conditions. The model is
complemented by appropriate singularities representing the driving mechanism for
the fluid motion, and by fixed boundary conditions as necessary.

The linear stability of a planar interface is easy to establish (Saffman & Taylor
1958). A routine analysis shows that if fluid 1 is to the right of a slightly perturbed
planar interface x = Vt + εeαt sin ny and fluid 2 to its left, then ignoring terms of
O(ε2),

α = n
µ1 − µ2

µ1 + µ2

V = n
k2 − k1

k2 + k1

V . (2.3)

An interface with V > 0 is therefore unstable if the less viscous fluid displaces the
more viscous one, a fact to which we return below.

3. The one-phase problem
When there is just one viscous liquid, say with µ2 = 0 (k2 = ∞), the pressure in the

inviscid liquid is constant, equal to zero without loss of generality. We then have the
commonly-studied one-phase Hele-Shaw problem for φ1 = −p1,

∇2φ1 = 0 in Ω1, φ1 = 0, k1

∂φ1

∂n
= Vn on Γ .

We need only the following well-known result from the many available for this
problem: if Γ is written in the form z̄ = g(z, t), where z = x + iy and g(z, t) is
known as the Schwarz function for Γ (Davis 1974), then the complex potential
w1(z, t) = −p1 + iψ1 = φ1 + iψ1 satisfies

k1

∂w1

∂z
=

1

2

∂g

∂t
. (3.1)

This result follows from the facts that, using s as arclength along Γ ,

∂z/∂s = (∂g/∂z)−1/2, Vn = −(i/2)(∂g/∂t)(∂g/∂z)−1/2,

so that, differentiating along Γ ,

k1

∂w

∂z
= k1

∂w

∂s

/∂z
∂s

= −k1

(
∂p

∂s
+ i

∂p

∂n

)/∂z
∂s

= −i

(
∂g

∂z

)1/2

(−Vn) =
1

2

∂g

∂t
.

The evolution of Γ , if known, thus determines the complex potential, i.e. the solution
of the Cauchy problem for the complex potential is given by (3.1). In general, of
course, the potential thus generated has singularities, and this can be exploited to
generate explicit solutions of the ‘direct’ problem (see Cummings, Howison & King
1999 for a review of the procedure for both Hele-Shaw and Stokes flows). Here,
however, we use (3.1) to generate ‘indirect’ solutions of the two-phase problem, in a
manner we now describe.

4. Explicit solutions to the two-phase problem
There appear to be very few non-trivial explicit solutions to the Muskat problem

in which both fluids are viscous. The only ones of which I am aware are the unsteady
solutions of Jacquard & Séguier (1962), and the comment by Saffman & Taylor
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(1958) that the air inside their fingers could be replaced by a viscous fluid without
changing the interface shape. Jacquard & Séguier deal with flow in a parallel-sided
channel, with fluids 1 and 2 on either side of Γ which meets both walls and divides
the fluid into two domains; fluid 1 is removed at a constant rate from x = +∞ and
fluid 2 is injected at x = −∞. The key to the solution is the remarkable observation
that, if the whole strip is conformally mapped onto a half-plane Re ζ > 0 by an
exponential transformation, then it is possible to satisfy all the boundary conditions
on Γ if it is mapped onto a semi-circular arc centred on the line Re ζ = 0, provided
that the centre and radius of the arc satisfy certain ordinary differential equations. In
the resulting solution, in the unstable case the interface evolves from a small nearly
sinusoidal perturbation of a line into a Saffman–Taylor finger occupying half the
width of the channel, and it has precisely the same shape as the unsteady solutions
of Saffman (1959), described in more detail below.

Saffman & Taylor (1958) found a one-parameter family of steadily-translating
finger solutions to the one-phase problem for a fluid of viscosity µ1 in a parallel-sided
channel with uniform extraction from x = +∞ with speed V , the parameter λ being
the fraction of the channel occupied by the finger at x = −∞. They noted in passing
that their finger also provides a solution to the two-phase problem, in which the air
inside the finger is replaced by a fluid of viscosity µ2 moving with uniform velocity
(U, 0) = (V/λ, 0) equal to that of the finger. Only the pressure field is different; it is
equal to its previous value plus the linear function −(x − Ut)/k2, the latter sufficing
to drive the second fluid.

This observation was the motivation for the following procedure for calculating
two-phase solutions in an ‘inverse’ manner.†

(a) First, construct a complex potential w2(z, t) which is analytic not just in Ω2

but in the whole domain Ω = Ω2 ∪ Γ ∪ Ω1. If we knew Ω2, this process would entail
analytic continuation; the restriction in the method comes in our assumption that
there are no additional singularities (this can be relaxed somewhat to allow for known
singularities, as we see below).

(b) Assume that a fluid of mobility k2 flows in all of Ω. Choose an initial curve Γ0

and follow its evolution as a material curve under the flow generated by w2(z, t). This
curve is to be Γ , and the region on one side of it is to be Ω2.

(c) Calculate the correction to the potential needed to make the fluid in Ω1, on the
other side of Γ , satisfy continuity of pressure and the kinematic boundary condition
on Γ . As the flow in Ω2 automatically satisfies the kinematic condition, this means
that equations (2.1) and (2.2) are both satisfied. As this step involves the solution of
a Cauchy problem for the potential, singularities may be expected to occur.

It is evident from the comments made on steps (a) and (c) that the method is
restricted in its scope.

Let us now consider the steps in turn. The first requires no comment; some examples
are given below. To achieve the second step, we need to follow a curve Γ : z = z(t)
whose complex velocity is k2∂w2/∂z, so that

dz̄

dt
= k2

∂w2

∂z
. (4.1)

Writing Γ as z̄ = g(z, t), we have that, on Γ ,

dz̄

dt
=
∂g

∂z

dz

dt
+
∂g

∂t
.

† It is worth noting that a similar procedure can be applied to irrotational inviscid flows.
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We can substitute for dz̄/dt from (4.1), and dz/dt is eliminated by taking the conjugate
of (4.1) to give

dz

dt
= k2

∂w2

∂z
(z, t) = k2

∂

∂z
w̄2(z̄, t) = k2

∂

∂z
w̄2 (g(z, t), t) = k2

∂w̄2

∂z
(g(z, t), t)

∂g

∂z
,

where w̄2(z, t) = w2(z̄, t) is analytic if w2 is. We thus have that, on Γ ,

1

k2

∂g

∂t
+
∂w̄2

∂z

(
g(z, t), t

)∂g
∂z

=
∂w2

∂z
(z, t), (4.2)

which also holds away from Γ by analytic continuation.
The characteristic equations for (4.2) are

dz

/
∂w̄2

∂z
(g, t) = dg

/
∂w2

∂z
(z, t) = dt

/
1

k2

,

from which we immediately find that

w̄2 (g(z, t), t)− w2(z, t) is constant along characteristics. (4.3)

This result, which is interesting in its own right, relates the potential on one side of
Γ to its value on the other by Schwarz reflection, and it holds for any potential flow.
Lastly, the remaining characteristic equation must be solved for either z or g, which
is unfortunately rarely easy to do.

Having calculated the evolution of Γ , it is straightforward to find the correction to
the potential in Ω1. Writing w1(z, t) = w2(z, t) + w̃1(z, t), the problem for φ̃1 = Re w̃1 is

∇2φ̃1 = 0 in Ω1, φ̃1 = 0, − k2k1

k2 − k1

∂φ̃1

∂n
= Vn on Γ .

It follows immediately from (3.1) that

k2k1

k2 − k1

∂w̃1

∂z
=

1

2

∂g

∂t
,

and since g is known, we have found w̃1. Of course, w̃1 is the potential for a one-phase
problem with this free boundary and mobility k2k1/(k2 − k1); if we already know a
solution to the one-phase problem with this free boundary with mobility k1 and
potential W1, then we need not calculate g, since we can immediately write down
w̃1 = (k2 − k1)W1/k2.

4.1. Examples

The main difficulty with the procedure outlined above is that it is necessary to
solve (4.3) for either g or z, and in practice this is usually difficult. Nevertheless, we
can give some examples.

Travelling-wave solutions. If the interface translates uniformly with velocity (U, 0),
then its Schwarz function is z̄ = Ut+g0(z−Ut), where g0(z) is the Schwarz function at
t = 0. If the fluid in region 2 also has velocity (U, 0), then w2(z, t) = w̄2(z, t) = Uz/k2,
and then the correction potential w̃1 can be that of any travelling-wave Hele-Shaw
flow. If, for example, the free boundary is x = Ut, we have g0(z) = −z, w̃1 =
U(z−Ut)(k2− k1)/k2k1, and w1 = w̃1 +w2 = U(z−Ut)/k1 +U2t/k2 as required. Less
trivially, suppose that the free boundary is the Saffman–Taylor finger with parameter
λ, and that the fluid velocity at +∞ is (V , 0). Writing W1 for the potential of this
flow with mobility k1 as above, we have that w̃1 = (k2 − k1)W1/k2. Now we know
that as x → +∞, W1 ∼ λUz/k1 and we require that w1 ∼ Vz/k1. Substituting into
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w1 = w2 + w̃1, we see that the finger speed U and the extraction speed V are related
by

U =
k2V

(1− λ)k1 + λk2

, 0 < λ < 1,

which is simply conservation of mass from x = −∞ to x = +∞. Note that for k2 < ∞,
U is bounded as λ→ 0, which it is not in the one-phase case; we return to this below.
Of course, any other travelling-wave solution of the one-phase problem, such as the
Ivantsov parabola in which the free boundary is a parabola translating along its axis,
can also be realised in the two-phase case.

Radially symmetric solutions. These are trivial to calculate and we omit the details.
Stagnation point flow. Suppose that fluid 2 has the stagnation-point potential

w2(z, t) = Az2/2k2, and that the initial interface is the line x = −a, a > 0. Then
g0(z) = g(z, 0) = 2a− z, and the equation for g(z, t) is

∂g

∂t
+ Ag

∂ḡ

∂z
= Az,

so that g(z, t) = 2aeAt − z. The interface remains a straight line moving towards the
origin (but never reaching it) for A < 0. (If the initial interface is a line not parallel to
one of the coordinate axes, it remains straight and rotates as well as translating.) The
correction to the potential in Ω1 is the linear function w̃1 = (k2 − k1)ae

At(z − AeAt).
The solution of Jacquard & Séguier. This solution to the two-phase problem has

a free boundary whose shape at each time is the same as that of Saffman’s (1959)
solution with λ = 1

2
, but whose time evolution is different. If there is just one phase,

the potential W1 for Saffman’s solution is related to z by the map

z =
k1W1

V
+ d(t) + log 1

2
(1 + a(t)e−k1W1/V ) = F(W1, t), say,

and since this is also a mapping from the right-hand half-plane onto Ω1 extended
periodically across the channel walls, we have that g(z, t) = F̄(−W1, t). After some
simplification, we find that

k1W1(z, t)

V
= log (2ez−d − a) = z + log (2e−d − ae−z),

g(z, t) = d− z − log (2e−d − ae−z) + log 1
2
(1− a2 + 2aez−d).

The first of these formulae shows that the fluid moves under the potential of a
uniform stream plus a source at z = d + log (a/2), outside Ω1. It also shows that
the pressure due to this source term alone varies linearly in x on the isobars of the
combined pressure. The second shows that g has a singularity within the fluid, and
the constancy of this in time (it must not contribute to ∂g/∂t which is proportional to
∂W1/∂z) leads to two relations between a and d, and thence to the interface shape as

cos y =

√
1− a2

0

a0

e−Vt sinh (x− Vt), (4.4)

where a0 is the initial value of a and d(0) has been chosen appropriately. The interface
is symmetric about x = Vt.

When there are two phases, motivated by the presence of two source-type singular-
ities in g(z, t) for the one-phase problem, we seek a solution in which the interface has
the same shape as, but different time evolution from, the one-phase case, and in which
each phase moves under a potential equivalent to a uniform stream together with
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a moving source lying outside the fluid. The sources for phase 2 lie on the channel
walls, and those for phase 1 on the real axis, and they are symmetrically disposed with
respect to the interface. Taking into account the periodicity of the flow in y, imposed
by the zero-flux conditions on the channel walls y = ±π, the potentials have the forms

w1(z) =
Vz

k1

+ Q1 log (e−z + D1(t)) + F1(t), w2(z) =
Vz

k2

+ Q2 log (e−z − D2(t)) + F2(t)

(in fact both the functions of time vanish with an appropriate choice of origin).
Matching of the pressure on the interfaces, taking into account the linear behaviour
mentioned above and the disposition of the sources, shows that Q1+Q2 = V/k1−V/k2

(which can also be deduced from the argument that follows). Furthermore, as
the interface is an isobar of z + log (2e−d − ae−z), its symmetry about its midline
x = d+log 2+ 1

2
log (1−a2) shows that it is also an isobar of −z+log (1−a2 +2aez−d).

The normal velocities at the interface can therefore be balanced as well as the pres-
sures provided that we take D1 = 2e−d/a, D2 = (1− a2)ed/2a, and Q1/k1 = Q2/k2. The
easiest way to find the time-dependence is to recall that

∂w1

∂z
− ∂w2

∂z
=

1

2

k2 − k1

k2k1

∂g

∂t
,

from which comparison of coefficients verifies the relations already found, and gives
differential equations for a and d, whose solution is√

1− a2

a
=

√
1− a2

0

a0

e−Vt(k2−k1)/(k2+k1), d+ 1
2

log (1− a2) = Vt+ log 2.

Lastly the interface shape is

cos y =

√
1− a2

0

a0

e−Vt(k2−k1)/(k2+k1) sinh (x− Vt).
The one-phase case can be recovered in the limit k2 → ∞. Jacquard & Séguier re-
mark of their solution ‘c’est là un hasard que rien ne pouvait laisser prévoir’. We
have derived it using a more systematic approach, however, which may allow further
solutions to be constructed.

5. Discussion
Although explicit solutions have intrinsic interest, our main reason for trying to

construct them is the hope that they may shed some light on the question of well-
posedness for the Muskat problem, about which very little appears to be known. In the
one-phase (Hele-Shaw) case, it may loosely be stated that problems in which the fluid
domain is expanding are well-posed, while those in which it contracts are not. This
is true for weak solutions as treated by, say, Elliott & Janovsky (1981), and although
classical solutions can have singular behaviour (for example when the topology
changes), the same dichotomy is generally observed. In particular, most contraction
problems lead to blow-up via some kind of singularity in the free boundary; often, this
is a cusp. Likewise, the speed of a Saffman–Taylor finger becomes infinite as λ→ 0.

Unfortunately it is much less easy to construct weak solutions to the two-phase
problem (see Otto 1999 for an approach in which a phase function is used to ‘smear
out’ the distinction between the two fluids) and evidence concerning its well-posedness
or otherwise is hard to come by. Insofar as there is a general view, it is probably fair to
say that the ‘folklore’ has it that if a Muskat problem has a moving boundary in which
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a less viscous fluid displaces a more viscous one, it is probably ill-posed, at least as far
as classical solutions are concerned. The only concrete evidence to back up this view
is the linear stability result (2.3), in which the large growth rate of short-wavelength
disturbances might be thought to promote blow-up: even though the result is only
local, since it is present at all length scales its influence might be more global, as it
is in the one-phase problem. Set against this, though, is the fact that the maximum
velocity of a Saffman–Taylor finger with two fluids is bounded when both mobilities
are finite. This implies that the speed of a parabolic interface (the inner solution near
the tip of a finger with λ � 1) is bounded (Otto 1997 shows that the ‘mixing zone’
for a weak solution in the Saffman–Taylor geometry grows linearly in time with the
same bound for its growth). If one were to contemplate the development of a cusp
in a two-phase free boundary, before blow-up its tip would also be approximately
parabolic and have bounded speed. It is not clear whether this shows that cusps
cannot form (in finite or infinite time); but it does indicate that if they do so, they
have finite speed at their formation, leading one to speculate that they may propagate
with finite speed rather than existing instantaneously with infinite tip speed. This
argument is backed up by the physical observation that the blow-up of a one-phase
problem is due to a feedback: as a nascent cusp in a retreating boundary protrudes
further into the fluid than neighbouring points, the constancy of the pressure on the
free boundary forces the pressure gradient directly ahead of the cusp to increase by
more than that nearby, thereby accelerating the instability. In a two-phase problem,
the second fluid occupies the interior of the protuberance, and can absorb some of
the pressure gradient, mitigating the tendency of the protuberance to grow.

In summary, we have discussed some approaches to finding explicit solutions
to Muskat problems, and we have made some speculations concerning the global
behaviour of solutions in general. It remains to be seen whether explicit solutions can
be as helpful in this respect as they have been for the Hele-Shaw problem.

This paper is dedicated to Philip Saffman, in recognition of his enormous contri-
bution to fluid mechanics in general, and the Hele-Shaw problem in particular. I am
grateful for helpful discussions with Peter Howell and John Ockendon.
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